The Nobel Prize in Chemistry 2017

Monday, October 9, 2017 - 08:25

Jacques Dubochet, Joachim Frank and Richard Henderson have won the the 2017 Nobel Prize in Chemistry "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution."

According to the official web site, nobleprize.org, the award goes to three pioneers of a technique called cryo–electron microscopy (cryo-EM): Jacques Dubochet of the University of Lausanne in Switzerland, Joachim Frank of Columbia University, and Richard Henderson of the Medical Research Council Laboratory of Molecular Biology (LMB) in Cambridge, U.K.

For decades, biologists have used X-ray crystallography — blasting X-rays at crystallized proteins — to image biomolecular structures. But labs are now racing to adopt the cryo-EM method, because it can take pictures of proteins that can’t easily be formed into large crystals. The tool has “moved biochemistry into a new era”, says the Royal Swedish Academy of Sciences, which awards the prize.

Over the past century, more than a dozen Nobel prizes have been awarded for X-raying crystals of proteins and other complex molecules to picture their atomic structure. This year, the prize went to a technique that can take similarly close snapshots of some of the large, wriggly structures that X-rays can’t see.

In 1990, Richard Henderson succeeded in using an electron microscope to generate a three-dimensional image of a protein at atomic resolution. This breakthrough proved the technology’s potential.

Joachim Frank made the technology generally applicable. Between 1975 and 1986 he developed an image processing method in which the electron microscope’s fuzzy twodimensional images are analysed and merged to reveal a sharp three-dimensional structure.

Jacques Dubochet added water to electron microscopy. Liquid water evaporates in the electron microscope’s vacuum, which makes the biomolecules collapse. In the early 1980s, Dubochet succeeded in vitrifying water – he cooled water so rapidly that it solidified in its liquid form around a biological sample, allowing the biomolecules to retain their natural shape even in a vacuum.

Following these discoveries, the electron microscope’s every nut and bolt have been optimised. The desired atomic resolution was reached in 2013, and researchers can now routinely produce three-dimensional structures of biomolecules. Biochemistry is now facing an explosive development and is all set for an exciting future.

Opinions


Popular News

Latest News