According to the A*STAR official website, researchers at the A*STAR Institute of Bioengineering and Nanotechnology, and colleagues, have shown that micelles with hydrophilic tips made of the polymer poly(ethylene glycol), commonly known as PEG, and hydrophobic tails of epigallocatechin gallate (EGCG) — a component of green tea — overcome the common existing problems.
Motoichi Kurisawa and colleagues found that the micelles had a remarkably high drug-loading capacity of over 80 per cent for the anticancer drug doxorubicin. They were also stable in the bloodstream.
“We didn’t expect such a high loading capacity,” says Kurisawa. “Usually micelles become unstable as you increase their drug-loading capacity, and yet our micellar nanocomplexes are soluble in water. That came as a surprise both to us and to some of the reviewers of the paper, who asked us to check our work. But we confirmed the results.”
The results also demonstrated the versatility of the micelles. “In a previous study, we utilized the protein antibody drug (see earlier highlight); this time, we used a small drug,” says Kurisawa. “This is the advantage over existing systems: EGCG can interact with different types of drugs, including antibodies, proteins, small drugs and even nucleic acid. However, specific polymer drug carriers have to be designed to encapsulate specific drugs in conventional techniques.”
In addition to being useful for transporting anti-cancer drugs, EGCG is also known to be a powerful anti-oxidant with anti-cancer properties. The team is now exploring this synergism.
The A*STAR-affiliated researchers contributing to this research are from the Institute of Bioengineering and Nanotechnology.