Scientists Reveal Big Secrets about Nanomagnet-Based Applications

Saturday, October 26, 2019 - 10:40

Scientists about University of California, Riverside have discovered that a microscopic process of electron spin dynamics in nanoparticles could impact the design of applications in medicine, quantum computation, and spintronics.

According to the report, magnetic nanoparticles and nanodevices have several applications in medicine—such as drug delivery and MRI—and information technology. Controlling spin dynamics—the movement of electron spins—is key to improving the performance of such nanomagnet-based applications.

"This work advances our understanding of spin dynamics in nanomagnets," said Igor Barsukov, an assistant professor in the Department of Physics and Astronomy and lead author of the study that appears in Science Advances.

In collaboration with researchers at UC Irvine and Western Digital in San Jose, as well as theory colleagues in Ukraine and Chile, Barsukov demonstrated how three magnon scattering, and thus the dimensions of nanomagnets, determines how these magnets respond to spin currents. This development could lead to paradigm-shifting advancements.

"Spintronics is leading the way for faster and energy-efficient information technology," Barsukov said. "For such technology, nanomagnets are the building blocks, which need to be controlled by spin currents."

The research team's work provides insights into the principles of energy dissipation in nanomagnets and could enable engineers who work on spintronics and information technology to build better devices.

"Microscopic processes explored in our study may also be of significance in the context of quantum computation where researchers currently are attempting to address individual magnons," Barsukov said. "Our work can potentially impact multiple areas of research."


Popular News

Latest News