Singaporean Researchers Develop Microsensor that Can be Injected Under the Skin

Monday, December 23, 2019 - 11:03

Researchers from the National University of Singapore (NUS) have succeeded to develop a new wireless reader which is tiny enough to be injected under the skin.

According to the FutureIOT report, these sensors are too small to be powered by a battery, so they require a sensor reader to be placed near them to constantly detect signals such as chemical or pressure changes using magnetic fields.

For a reader to make sense of the signals, the sensor must be large enough to create a strong signal in the reader. So far, researchers have not been able to create viable microsensors below 1 millimetre.

“We hope that our breakthrough will be a trailblazer for the future of minimally invasive health monitoring solutions where patients are immediately alerted whenever their physiological conditions such as heart rate and blood glucose cross a critical threshold,” said Professor John Ho. who led the team of NUS researchers from the university’s the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering and the NUS Institute for Health Innovation and Technology.

The team developed a working prototype of the reader that can read a microsensor that is 0.9 millimetres in diameter while implanted underneath the skin using a syringe. In lab experiments, the reader was able to monitor the rate of breathing and heart rate by detecting subtle movements of the battery-free microsensor.

It took two years of research by the team, from February 2017 to January 2019, to develop this innovative microsensor. The team’s achievement was published in August 2019 in the scientific journal Nature Electronics.

“Now that we have proven the viability of our reader, the next step is to develop a suite of passive (battery-free) microsensors that can monitor various physiological parameters such as glucose, bioelectrical activity and blood chemistry,” Ho said.


Popular News

Latest News